Given p(s)p(s)p(s) is the Risk-Neutral Probability Density Function of underlying spot price s,
Thus ∂C2(K)∂K2=∂P2(K)∂K2=e−rTp(s)\frac{\partial{C^{2}(K)}}{\partial{K^2}} = \frac{\partial{P^{2}(K)}}{\partial{K^2}} =e^{-rT}p(s)∂K2∂C2(K)=∂K2∂P2(K)=e−rTp(s)
Leibniz integral rulearrow-up-right
Leibniz rule for improper integralarrow-up-right
Chain rulearrow-up-right
The Risk Neutral Returns Distribution for the U.S. Stock Marketarrow-up-right
Deriving option-implied probability densities for foreign exchange marketsarrow-up-right
Last updated 1 year ago