Damon's Blog
  • Damon's Blog
  • 💻Tech
    • Understand C++ Special Member Function Generation
    • Understand C++ Template Type Deduction
    • Using Windows Keymap in Mac and Intellij
    • Setup C++ Dev Env in MacOS using Docker
    • Floating-point Arithmetic
    • Java HFT Toolbox
    • Interesting Bitwise Operation
    • Python Metaclass
    • Memory Order
    • Grind 75+
      • Array
      • String
      • Matrix
      • Binary Search
      • Graph
      • Tree
      • Math
      • Hash Table
      • Recursion
      • Linked List
      • Stack
      • Heap
      • Trie
      • Dynamic Programming
      • Binary Operation
    • C++ for Java Developers
    • Typical Domain Driven Design Application Architecture
    • How to Deploy Applications in Linux Properly
    • Design Patterns with Java Examples
    • Tools for Reliability
    • MVCC in Database
    • Two Microservice Tech Stacks
    • The Difference between 127.0.0.1 and 0.0.0.0
  • ➗Math
    • Local Volatility in Terms of Implied Volatility
    • Mean and Variance of Squared Gaussian
    • A Simple Explanation of Information Gain
  • 💲Trading
    • Understanding Risk-Neutral Density Functions
    • The Deriving of Black-Scholes Equation
    • Quant Questions
  • 💎Gems
    • 2024
  • 📖Books
    • Performance Analysis and Tuning on Modern CPUs
Powered by GitBook
On this page

Was this helpful?

  1. Trading

Understanding Risk-Neutral Density Functions

PreviousA Simple Explanation of Information GainNextThe Deriving of Black-Scholes Equation

Last updated 8 months ago

Was this helpful?

Given p(s)p(s)p(s) is the Risk-Neutral Probability Density Function of underlying spot price s,

C(K)=e−rT∫K+∞(s−K)p(s)ds=e−rTlim⁡a→+∞∫Ka(s−K)p(s)ds∂C(K)∂K=e−rT∂(lim⁡a→+∞∫Ka(s−K)p(s)ds)∂K=e−rTlim⁡a→+∞∂(∫Ka(s−K)p(s)ds)∂K=e−rT[]0−(K−K)p(K)∗1+∫K+∞(−1)p(s)ds]=e−rT(∫0Kp(s)ds−1)∂C2(K)∂K2=e−rTp(s)P(K)=e−rT∫0K(K−s)p(s)ds∂P(K)∂K=e−rT∂(∫0K(K−s)p(s)ds)∂K=e−rT[(K−K)p(s)∗10−0+∫0Kp(s)ds]=e−rT∫0Kp(s)ds∂P2(K)∂K2=e−rTp(s)\begin{aligned} C(K) &= e^{-rT}\int_{K}^{+\infty}(s-K)p(s)ds \\ &= e^{-rT} \lim_{a \rightarrow +\infty} \int_{K}^{a}(s-K)p(s)ds \\ \frac{\partial{C(K)}}{\partial{K}} &= e^{-rT} \frac{\partial{(\lim_{a \rightarrow +\infty} \int_{K}^{a}(s-K)p(s)ds)}}{\partial{K}} \\ &= e^{-rT} \lim_{a \rightarrow+\infty}\frac{\partial{\left(\int_{K}^{a}(s-K)p(s)ds\right )}}{\partial{K}} \\ &= e^{-rT}\left [] 0 - (K-K)p(K)*1 +\int_{K}^{+\infty}(-1)p(s)ds \right ] \\ &=e^{-rT}\left ( \int_{0}^{K}p(s)ds -1 \right ) \\ \frac{\partial{C^{2}(K)}}{\partial{K^2}} &=e^{-rT}p(s) \\ \\ \\ P(K) &= e^{-rT}\int_{0}^{K}(K-s)p(s)ds \\ \frac{\partial{P(K)}}{\partial{K}} &= e^{-rT} \frac{\partial{(\int_{0}^{K}(K-s)p(s)ds)}}{\partial{K}} \\ &= e^{-rT}\left [ (K-K)p(s)*10 - 0 +\int_{0}^{K}p(s)ds \right ] \\ &=e^{-rT}\int_{0}^{K}p(s)ds\\ \frac{\partial{P^{2}(K)}}{\partial{K^2}} &=e^{-rT}p(s) \end{aligned}C(K)∂K∂C(K)​∂K2∂C2(K)​P(K)∂K∂P(K)​∂K2∂P2(K)​​=e−rT∫K+∞​(s−K)p(s)ds=e−rTa→+∞lim​∫Ka​(s−K)p(s)ds=e−rT∂K∂(lima→+∞​∫Ka​(s−K)p(s)ds)​=e−rTa→+∞lim​∂K∂(∫Ka​(s−K)p(s)ds)​=e−rT[]0−(K−K)p(K)∗1+∫K+∞​(−1)p(s)ds]=e−rT(∫0K​p(s)ds−1)=e−rTp(s)=e−rT∫0K​(K−s)p(s)ds=e−rT∂K∂(∫0K​(K−s)p(s)ds)​=e−rT[(K−K)p(s)∗10−0+∫0K​p(s)ds]=e−rT∫0K​p(s)ds=e−rTp(s)​

Thus ∂C2(K)∂K2=∂P2(K)∂K2=e−rTp(s)\frac{\partial{C^{2}(K)}}{\partial{K^2}} = \frac{\partial{P^{2}(K)}}{\partial{K^2}} =e^{-rT}p(s)∂K2∂C2(K)​=∂K2∂P2(K)​=e−rTp(s)

Reference

💲
Leibniz integral rule
Leibniz rule for improper integral
Chain rule
The Risk Neutral Returns Distribution for the U.S. Stock Market
Deriving option-implied probability densities for foreign exchange markets