Understanding Risk-Neutral Density Functions

Given p(s)p(s) is the Risk-Neutral Probability Density Function of underlying spot price s,

C(K)=erTK+(sK)p(s)ds=erTlima+Ka(sK)p(s)dsC(K)K=erT(lima+Ka(sK)p(s)ds)K=erTlima+(Ka(sK)p(s)ds)K=erT[]0(KK)p(K)1+K+(1)p(s)ds]=erT(0Kp(s)ds1)C2(K)K2=erTp(s)P(K)=erT0K(Ks)p(s)dsP(K)K=erT(0K(Ks)p(s)ds)K=erT[(KK)p(s)100+0Kp(s)ds]=erT0Kp(s)dsP2(K)K2=erTp(s)\begin{aligned} C(K) &= e^{-rT}\int_{K}^{+\infty}(s-K)p(s)ds \\ &= e^{-rT} \lim_{a \rightarrow +\infty} \int_{K}^{a}(s-K)p(s)ds \\ \frac{\partial{C(K)}}{\partial{K}} &= e^{-rT} \frac{\partial{(\lim_{a \rightarrow +\infty} \int_{K}^{a}(s-K)p(s)ds)}}{\partial{K}} \\ &= e^{-rT} \lim_{a \rightarrow+\infty}\frac{\partial{\left(\int_{K}^{a}(s-K)p(s)ds\right )}}{\partial{K}} \\ &= e^{-rT}\left [] 0 - (K-K)p(K)*1 +\int_{K}^{+\infty}(-1)p(s)ds \right ] \\ &=e^{-rT}\left ( \int_{0}^{K}p(s)ds -1 \right ) \\ \frac{\partial{C^{2}(K)}}{\partial{K^2}} &=e^{-rT}p(s) \\ \\ \\ P(K) &= e^{-rT}\int_{0}^{K}(K-s)p(s)ds \\ \frac{\partial{P(K)}}{\partial{K}} &= e^{-rT} \frac{\partial{(\int_{0}^{K}(K-s)p(s)ds)}}{\partial{K}} \\ &= e^{-rT}\left [ (K-K)p(s)*10 - 0 +\int_{0}^{K}p(s)ds \right ] \\ &=e^{-rT}\int_{0}^{K}p(s)ds\\ \frac{\partial{P^{2}(K)}}{\partial{K^2}} &=e^{-rT}p(s) \end{aligned}

Thus C2(K)K2=P2(K)K2=erTp(s)\frac{\partial{C^{2}(K)}}{\partial{K^2}} = \frac{\partial{P^{2}(K)}}{\partial{K^2}} =e^{-rT}p(s)

Reference

Last updated

Was this helpful?