Given Y=X2Y=X^2Y=X2 where X∼ϕ(0,σ2)X \sim \phi(0, \sigma^2)X∼ϕ(0,σ2), what is the mean and variance of the YYY?
Since σ2=E(X2)−E(X)2\sigma^2 = E(X^2) - E(X)^2σ2=E(X2)−E(X)2, and E(X)=0E(X) = 0E(X)=0, E(X2)=σ2E(X^2) = \sigma^2E(X2)=σ2. Also,
and the fourth moment EX4EX^4EX4 is equal to 3σ43\sigma^43σ4 since
(actually, E[X2n]=(2n−1)!!σ2nE\left [ X^{2n}\right ] = (2n - 1)!!\sigma^{2n}E[X2n]=(2n−1)!!σ2n, !!!!!! is the double factorialarrow-up-right
thus
Mean and variance of Squared Gaussianarrow-up-right
Proving E(X4)=3σ4E(X^4) = 3\sigma^4E(X4)=3σ4arrow-up-right
Last updated 1 year ago